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This paper is about induced laminar f low through an open-ended vertical annulus with 
two rotating boundaries, one of which is isothermally heated, while the other is perfectly 
insulated. The boundary-layer equations governing this case have been numerically 
solved, and results are presented for a fluid of Pr = 0.7 in an annulus of radius ratio 0.9. 
These results clarify the characteristics of the induced flow caused by isothermally heating 
one of the two rotating boundaries. Moreover, the results presented show the effect of 
outer cylinder rotation on the adiabatic wall temperature, the heat absorbed by the fluid, 
and the relationship between the annulus height and the induced flow rate. 
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I n t r o d u c t i o n  

Coney and E1-Shaarawi (1974a, 1974b) investigated the 
hydrodynamically developing laminar force flow with constant 
physical properties in the entrance region of concentric annuli 
with rotating inner walls. They showed that, provided the inner 
cylinder rotational speed is insufficient to generate hydro- 
dynamic instability (Astill 1964) and/or Taylor vortices (Taylor 
1923), the inner cylinder rotation slightly affects the heat 
transfer in the laminar regime. 

E1-Shaarawi and Sarhan (1981) presented numerical results 
for natural convection flow of a fluid of Pr = 0.7 in an 
open-ended, vertical, concentric annulus of radius ratio 0.5 with 
a rotating inner wall under the thermal boundary conditions 
of one wall being isothermal and the opposite wall adiabatic. 
E1-Shaarawi and Khamis (1987) presented numerical results for 
laminar natural convection through an open-ended, vertical 
annulus with a rotating inner cylinder, one uniformly heated 
boundary, and one adiabatic boundary. Results of both 
investigations (EI-Shaarawi and Sarhan; E1-Shaarawi and 
Khamis) show that heating the inner cylinder always has 
stabilizing effects; whereas, heating the outer cylinder has either 
destabilizing or stabilizing effects. 

Soundalgekar and Sarma (1986) numerically investigated the 
developing laminar forced flow in an annulus between two 
co-rotating cylinders. EI-Shaarawi and Kodah (1990) studied 
the developing natural convection in an open-ended, vertical 
annulus with two co-rotating or counter-rotating boundaries, 
a uniformly heated inner wall, and an adiabatic outer wall. To 
the best of the authors' knowledge, no investigations are 
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available in the literature concerning induced flow in vertical, 
concentric annuli with two rotating boundaries under the 
isothermal boundary condition. The lack of either experimental 
or theoretical data on this subject motivated the present work. 
This work presents the induced flow characteristics in an 
annulus whose two boundaries are rotating in either the same 
or opposite directions, and one of these boundaries is 
isothermally heated, while the other is perfectly insulated. Two 
thermal boundary conditions are considered; namely, case 
(I) in which the inner cylinder is isothermally heated, while 
the outer cylinder is perfectly insulated; and case (0) in which the 
outer cylinder is the isothermally heated boundary, while the 
inner cylinder is adiabatic. 

Governing equations and method of solution 

Consider a vertical, open-ended concentric annulus whose 
inner and outer cylinders rotate with constant angular 
velocities f~l and f~2, respectively, and either its inner or its 
outer wall is isothermally heated; whereas, the other wall is 
perfectly insulated. The heat added to (or removed from) one 
of the annulus walls engenders an upward (or downward) 
natural flow in the annular gap between the two cylindrical 
walls. This induced flow is assumed to be steady and 
axisymmetric, with no internal heat generation, negligible 
viscous dissipation, and the fluid enters the bottom (in the case 
of heating) or the top (in the case of cooling) of the annulus 
with a fiat velocity profile at a value equal to the mean axial 
velocity in the annular gap Uo, and with a uniform temperature 
profile at a value equal to the ambient temperature to. The 
physical properties of the fluid are assumed to be independent 
of location and temperature, but the density is allowed to vary 
with temperature in only the body force term of the vertical 
(axial momentum) equation. Furthermore, the hydrodynamic 
and thermal boundary-layer simplifications are assumed to be 

0142-727X/95/$10.00 
SSDI 0142-727X(94)00003-U 



Isothermal vertical annul i  wi th two rotating boundaries: Z Kodah and M. A. I. EI-Shaarawi 

Notation 

a local heat transfer coefficient based on area of 
heat transfer surface 

ot / 

q/(tw -- to) = T- k / Or w.(tm -- tw); 

the minus and plus signs are, respectively, for 
heating (upward flow) and cooling (downward 
flow) at the inner boundary [case (I)] and vice 
versa at the oul!er boundary [case (0)'1 

fi average heat transfer coefficient over the annulus 
height based on area of heated wall, 

fo  a dz/l = -t- -- to)l , )i/nDw(tw 

the plus and minus signs are for upward (heating) 
and downward (cooling) flows, respectively 

b annular gap width, (r 2 - rl) 
cp specific heat of fluid at constant pressure 
D equivalent (hydraulic) diameter of annulus, 2b 
D~ diameter of heated wall 

f '2 = n( r2 _ r2)uo 2nru dr 
I 

F dimensionless volumetric flow rate, 

f / n l G r * v  = 2 R U  dR = (1 -- N2)Uo 
N 

Ffd fully developed value of F 
g gravitational body force per unit mass 
Gr Grashofnumbe!r, +gfl(tw - to)Da/v2; the plus and 

minus signs and for heating (upward flow) and 
cooling (downward flow), respectively 

Gr* modified Grashof number, Gr.D/ l  
h heat absorbed or lost by fluid from entrance up to 

a particular elevation in the annulus, + pofcp(t= 
- to); the plus and minus signs are for heating 

and cooling, respectively 
heat absorbed or lost by fluid from entrance up to 
the annulus exit; i.e., value of h at z = l, 
+_ pocp f ([~  - to); the plus and minus signs are 
for heating and cooling, respectively 

H dimensionless heat absorbed or lost from 
entrance up to a particular elevation, 

+h/npoc f f  Gr*l(tw - to) = 2 U T R  = FTm 

plus and minus signs are respectively for heating 
and cooling 

/-/ dimensionless heat absorbed or lost from entrance 
up to annulus e~it; i.e., value of H at z = l, _+h 
/npocpv Gr*l(t~ -- to) 

Hfd fully developed value of H 
k thermal conductivity of fluid 
l height of annuhls 
L dimensionless annulus height, 1/Gr* 
N annulus radius ratio, r l / r  2 
Nu local Nusselt number, 

aD/k = 2 ( 1 -  N} ~ w ( l - T = )  

N--u average Nusselt number, ?zD/k =/-St Ra* D/Dw 
p pressure of fluid at any point inside the channel 
p' pressure defect at any point, (p - p,) 
po pressure of fluid at annulus entrance 
p, hydrostatic pressure at any particular elevation, 

+ pogZ; the minus and plus signs are for upward 
(heating) and downward (cooling) flows, respectively 

p~o pressure of fluid at outer boundary 
P dimensionless pressure defect, p' r~/pol 2 v2(Gr*) 2 
P~o dimensionless pressure defect at outer boundary 
Pr Prandtl number,/~cJk 

q heat flux at heat transfer boundary, which is posi- 
tive in the case of heating and negative in the case 
of cooling, _+ k(Ot/Or)w; the minus and plus signs 
are respectively for cases (I) and (0) when there 
is heating, and vice versa when there is cooling 

r radial coordinate 
ri inner radius of annulus 
r 2 outer radius of annulus 
R dimensionless radial coordinate, r/r 2 
Ra Rayleigh number, Gr 'P r  
Ra* modified Rayleigh number, Gr*-Pr 
Re axial Reynolds number uoD/v 
t fluid temperature at any point 
tad adiabatic wall temperature 
tm mixing cup temperature over any cross section 

4; utr dr ur dr 
I I 

[m mixing cup temperature over the exit cross section; 
i.e., value of tm at z = l 

to fluid temperature at annulus entrance 
T dimensionless temperature at any point, (t - to)/(tw - to) 
Tad dimensionless adiabatic wall temperature, 

(t,~ - to)/(t~ - to) 
T,~ dimensionless mixing cup temperature over any 

cross section 

(tin - to)/(tw - to) = U T R  dR/  UR dR 

iP~, mixing cup temperature at exit cross section; i.e., 
value of Tm at z = l 

Ta Taylor number, 2D~r~b3/v2(rx + r2) 
Ta* modified Taylor number, Ta (b/l) 2 
u axial velocity component at any point 
Uo entrance axial velocity, 

f ,2 2ur dr/(r~ - r 2) 
I 

ufd fully developed axial velocity component 
U dimensionless axial velocity component, ur~/vl Gr* 
Uo dimensionless axial velocity at annulus entrance, 

Uor2 /vl Gr* 
Ufd dimensionless fully developed axial velocity component 
v radial velocity component at any point 
vrd fully developed radial velocity component (equals zero) 
V dimensionless radial velocity component, vr2/v 
w tangential velocity component, at any point 
wfd fully developed tangential velocity component 
W dimensionless tangential velocity component, w/f] lr l  
Wfa dimensionless fully developed tangential velocity 

component, Wfd/Qlr 1 
z axial coordinate 
Z dimensionless axial coordinate, z/l Gr* 

Greek symbols 
thermal diffusivity of fluid, k/pocp 

fl volumetric coefficients of thermal expansion 
3= axial-velocity-boundary-layer thickness 
3w tangential-velocity-boundary layer thickness 
3 e tangential boundary-layer displacement thickness 

f ,2 w dr~riD 
I 

3" dimensionless tangential boundary-layer dis- 
placement thickness, 30/b 

/t dynamic fluid viscosity 
v kinematic fluid viscosity, It/po 
p fluid density at temperature t, po[1 - fl(t - to)] 
po fluid density at inlet fluid temperature 
~b dimensionless radial coordinate, (r - r l)/(r 2 - r 0 
Q ratio between angular velocities of the cylinders, f]2/fll 
D~ angular velocity of inner cylinder 
f~2 angular velocity of outer cylinder 
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applicable; i.e., axial diffusions of momentum and heat are 
negligible, as compared with their transverse (radial) counter- 
parts, and the radial velocity component is negligible, as 
compared with the axial and tangential counterparts. 

Under the above assumptions, the equations that govern the 
induced fluid motion and heat transfer, in their dimensionless 
forms, using the nondimensional parameters given in the 
notation, are as follows: 

0V V 0U 
- - + - - + - - = 0  (1) 
OR R OZ 

W 2 (1 -- N)3(1 + N) Re 2 OP 

R 2F 2 Ta dR (2) 

OW OW Ozw 1 OW W 
V - -  + U + (3) 

dR c3z 0R 2 R OR R 2 

OU OU OP T 02U 1 OU 
V - - ÷  U - - =  t- + + - - - -  (4) 

OR OZ OZ 16(1 - N)'* oR ~ R OR 

OT OT 1 (02T l O T )  
v - -  + u - -  = - -  + (5) 

OR e z  Pr \OR s 

These five coupled Equations 1-5 are subject to the following 
boundary conditions: 

for 

Z = O a n d N < R < l ,  V = W = T = O ,  U = U o ,  

and 

e = Po = - U2o/2 

for 

Z > 0  and R = N , U = V = O ,  W = I ,  

and 

OT 
T = 1 for case I or - -  = 0 for case 0 

OR 

for 

Z > 0  and R = I , U = V = 0 ,  W = f l / N ,  

and 

OT 
- -  = 0 for case I 
OR 

o r  

T = 1 for case (0) 

for 

Z = L and R = 1, P = 0 (6) 

In practice, the annulus height is normally known, and it 
must be known to find the corresponding induced flow rate. 
However, in the present method, the reversed problem is 
handled (E1-Shaarawi and Sarhan 1981); i.e., we find an 
unknown channel height for the given flow rate F, t), and 
Re2/Ta. Taking into consideration that Gr = (1 + N)Re/ 
{4(1 - N)F}; i.e., Re2/Ta = 16F2(Gr2/Ta)(1 - N)2/(1 + N) 2, 
the above set of coupled equations are exactly identical to those 
dimensionless equations that govern the case with a stationary 
outer boundary (EI-Shaarawi and Sarhan), and hence, the 
finite-difference scheme presented by E1-Shaarawi and Sarhan 
could be used. However, the following five similarity 
parameters govern the present case: the annulus radius ratio 
N; the dimensionless volumetric flow rate F; or the 
dimensionless axial velocity component at annulus entrance 

Uo, instead of F because F = ( 1 -  N2)Uo); the rotational 
parameter Re2/Ta that appears in the radial momentum 
Equation (2) (or Gr2/Ta instead of Re2/Ta; and the ratio 
between angular velocities of cylinders fl and the Prandtl 
number (Pr). Values of these five controlling similarity 
parameters should, therefore, be chosen for each computer run. 
Then, the computation starts at the entrance of the annulus 
and continues in the axial direction until the dimensionless 
pressure defect P at the outer wall of the annulus ceases to be 
negative (that is, where the maximum pressure at a point in the 
annular gap becomes equal to the hydrostatic pressure at its 
elevation). The dimensionless axial distance Z from the 
entrance of the annulus to the cross section at which P = 0 at 
R = 1 establishes the unknown dimensionless height L, and 
hence, the unknown modified Grashof number Gr* corre- 
sponding to the chosen values of the similarity parameters. 

Fully developed profiles 

There are two velocity boundary layers developing on each of 
the annulus walls. The axial-velocity-boundary-layer thickness 
5= is inversely proportional to the square root of Reynolds 
number (5= ~ 1 / x / ~  ) (Schlichting 1979), and similarly, the 
tangential-velocity-boundary-layer thickness Jw is inversely 
proportional to the Taylor number raised to the power 1/4 
(6w ~ T a -  1/4). The relative magnitudes of the lengths 
required for the tangential velocity component and the axial 
velocity component development is proportional to the ratio 
6w/6., which is proportional to (Re2/Ta) 1/4. 

If the annulus is sufficiently high, fully developed conditions 
may be achieved before the fluid reaches the exit cross section. 
For free-convection flows in vertical ducts, the single 
assumption of a fully developed velocity field necessarily means 
that the flow is also thermally fully developed l(Schlichting 
1979). In other words, the thermal development length, for 
natural convection flows in vertical channels, is shorter, or at 
most, equal to that of the hydrodynamic development length, 
irrespective of the value of Prandtl number (Aung 1972). This 
is, of course, different from the case of pure forced convection, 
in which the relative magnitudes of the thermal and 
hydrodynamic development lengths are strongly dependent on 
the value of Prandtl number. 

In the present case, because one of the annulus boundaries 
is kept isothermal, fully developed conditions are T =  1, 
O/dZ --- 0, and V = 0. Thus, for fully developed flow, Equations 
3 and 4 reduce to the following: 

] (RW, d) = o (7) 

and 

1 O 
( R  q = 0 (8) 

0Ufd ~ 1 

R OR _ OR / 16(1 - N) 4 

Integrating each of Equations 7 and 8 twice and applying the 
boundary conditions gives the following fully developed 
Couette (tangential) and axial velocity profiles, respectively: 

Wfd = N I l  - -  N2[(1 - [~)/R - R(1 -- ~/N2)] (9) 

and 

Ufd = [1 -- R 2 -- (1 -- N2)(ln R/In N)/64(1 - N) 4 (10) 

These fully developed velocity profiles provide an analytical 
check on the numerical solutions to be obtained in sufficiently 
high annuli. Also, it should be noted that in the present case 
with an isothermal boundary condition, there is an upper 
limiting value of the dimensionless volumetric flow rate F. 

38 Int. J. Heat and Fluid Flow, Vol. 16, No. 1, February 1995 



Isothermal vertical annufi with two rotating boundaries: Z. Kodah and M. A. I. EI-Shaarawi 

Using Equation 10 and taking into consideration that T = 1 
for fully developed flow, the upper-limiting values of the 
dimensionless volumetric flow rate and heat absorbed (F and 
H) are as follows 

f. F f d  ~- H f d  ---- 2 RUfd ,dR 

1 - N 2 F N 2  1 - N2-1 
1 + + -:---::-__ 1 (11) 

128(~--~)* L I n N ]  

Results and discussion 

For a fluid of Pr = 0.7 :in an annulus of N = 0.9, more than 
120 computer runs were made for each of case (I) and case (0). 
These computer runs cover some selected ranges of the 
controlling parameters F, ReZ/Ta, and f~. Twelve values of 
F < Ffd (0.001, 0.005, 0.01, 0.02, 0.03 . . . . .  0.09, and 0.095), two 
values of ReZ/Ta (10 and 1), and more than seven values of Q 
(0.00, +0.45, _+0.90, +1.8 . . . .  ) were chosen. 

For the special case of a rotating inner cylinder and a 
stationary outer cylinder, the development of the tangential 
boundary-layer displacement thickness (60) is of special 
importance. Astill (1964) developed an empirical stability 
criterion for the onset of hydrodynamic instability in 
tangentially developing flows. To the authors' knowledge, this 
is the unique criterion available to date for the location of the 
axial position of the point of origin of instability in tangentially 
developing flows. Astill's empirical stability criterion is, in fact, 
a Taylor number based on the tangential boundary-layer 
displacement thickness, rather than the gap width. To the 
authors' knowledge, the only results available in the literature 
for the development of 60 in the free convection regime under 
the isothermal boundary condition are those of EI-Shaarawi 
and Sarhan (1981), for an annulus of radius ratio 0.5. For this 
reason, and in order to cover the lack of information in the 
literature and to facilitate the use of Astill's stability criterion, 
the developing dimensic)nless tangential boundary-layer dis- 
placement thickness (6*) is presented for an annulus of radius 
ratio 0.9, under the isothermal boundary conditions of cases 
(I) and (0) in Figs. la and lb, respectively. In each of these two 
figures, 6* is presented against the dimensionless axial distance 
Z (measured from the annulus entrance) for some selected 
values of the dimensionless flow rate F as a parameter. Each 
curve (corresponding to a given F) in these two figures ends at 
Z = L. For relatively large values of F, 6" approaches the fully 
developed value of 0.49(3)761; again, this provides a check on 
the adequacy of the present numerical solutions. 

Comparing the values 6~' in these two figures, it can be seen 
that the value of 6~ for case (I) is lower, at the same values of 
Z and F, than its corresponding value for case (0). Combining 
this result with Astill's (1!)64) stability criterion for tangentially 
developing flows means that thermal boundary conditions (I) 
engenders a flow that has a more stable tendency than that 
engendered because of thermal boundary conditions (0). This 
result is as might be expected because under thermal boundary 
conditions (I) and (0), negative and positive radial temperature 
gradients exist, respectively. Becker and Kaye (1962) and 
Walowit, et al. (1964) have shown that positive and negative 
radial temperature gradients are destabilizing and stabilizing, 
respectively. 

On the other hand, from either of these two figures, it can 
be seen that, at the same value of Z, decreasing the value of F 
causes an increase in the value of 6~'; i.e., according to Astill's 
(1964) stability criterion, shows more tendency for destabiliza- 
tion. This can be attributed to the fact that F is directly 
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m4 M4 ~ M "| Z M 4 

Figure l(a) Dimensionless tangential boundary-layer displace- 
ment thickness against dimensionless axial distance: N =  0.9; 
Pr = 0.7; Re2/Ta = 10; ~ = 0, case (I) 

0.$ 

i 

1°"6 lo4 to'~ lO 4 z lo .= 

Figure 1(b) Dimensionless tangential boundary-layer displace- 
ment thickness against dimensionless axial distance: N =  0.9; 
Pr = 0.7; Re2/Ta = 10; Q = 0, case (0) 

proportional to the axial velocity, and it is known (Chung and 
Astill 1977) that the presence of a superimposed, low axial flow 
has a stabilizing effect on the onset of Taylor vortices. 

At this stage, it may be instructive to mention that the present 
results for 6", and hence, stability conclusions based on the 
rates of growth of 6~, do not consider the effect of kinematic 
viscosity variation (caused by temperature differences). 
Simmers and Coney (1980) indicate that the critical Taylor 
number is higher in diabatic flows than for adiabatic flows 
because of the dependence of Taylor number on kinematic 
viscosity. However, Wan and Coney (1982) note that the 
viscosity variation in air, being small, would not have a strong 
effect. Their forced flow experiments with a heated outer wall 
in a vertical annulus suggest a stabilizing effect, rather than the 
present conclusion based on Astilrs (1964) stability criterion, 
and which is in agreement with conclusions of Becker and Kaye 
(1962) and Walowit et al. (1964). To the author's knowledge, 
experimental results are not yet available for the problem of 
hydrodynamic stability in the free-convection regime. There- 
fore, experimental programs are needed in this context. 

Tables 1 and 2 give, for cases (I) and (0) respectively, the 
dimensionless annulus height corresponding to each chosen 
value of F for all the investigated values of f2 and Re2/Ta. These 
two tables are of practical importance to designers and 
engineers. An important observation from Tables 1 and 2 is 
that increasing [~ or decreasing Re2/Ta causes, for a given F, 
a decrease in the annulus height. 

Figure 2 shows examples for the obtained temperature 
profiles under both thermal conditions (I) and (0). It is clear 
from this figure that, for both boundary conditions, the 
temperature of the fluid increases as the flow moves away from 
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T a b l e  1 F-L relat ionships for var ious values for a f lu id of Pr = 0.7 in an annulus of N = 0.9, case (I) 

Dimensionless annulus height, L 

Re2/Ta = 10 Re2/Ta = 1 

F/~ 0.00 0.45 0.9 > 1 . 8  - 0 . 4 5  - 0 . 9 0  < - 1 . 8 0  0.00 _< - 0 . 4 5  >_0.45 

0.095 4.31 × 10 -2  4.08 × 10 -2  3.65 x 10 -2  NI*  4 .34 x 10 -2  4.17 x 10 -2  NI 3.42 × 10 -2  NI NI 
0.09 1.73 x 10 -2  1.64 × 10 -2  1.47 x 10 -2  NI 1.74 x 10 -2  1.67 x 10 -2  NI 1.38 x 10 -2  NI NI 
0.08 6.98 x 10 -3  6.64 x 10 -3  6.00 x 10 -3  NI 7.02 x 10 -3  6.77 x 10 -3  NI 5.65 x 10 -3  NI NI 
0.07 3.80 x 10 -3  3.62 x 10 -3  3.27 × 10 -3  NI 3.82 x 10 -3  3.69 x 10 -3  NI 3.06 x 10 -3  NI NI 
0.06 2.23 x 10 -3  2.12 x 10 -3  1.91 x 10 -3  NI 2.24 x 10 -3  2.16 x 10 -3  NI 1.77 x 10 -3  NI NI 
0.05 1.32 x 10 -3  1.25 x 10 -3  1.12 x 10 -3  NI 1.33 × 10 -3  1.28 × 10 -3  NI 1.04 x 10 -3  NI NI 
0 .04 7.52 × 10 -4  7 . 1 3 ×  10 -4  6 . 3 6 x 1 0  -4  NI 7 . 5 5 x 1 0  -4  7.21 x 10 -4  NI 6 . 0 8 x 1 0  -4  NI NI 
0.03 3.92 × 10 -4  3.74 x 10 -4  3.36 × 10 -`= NI 3.92 x 10 -4  3.72 x 10 -4  NI 3.36 x 10 -4  NI NI 
0.02 1.76 × 10 -4  1.70 × 10 -4  . 1.55 x 10 -4  NI 1.75 x 10 -4  1.64 × 10 -4  NI 1.62 x 10 -4  NI NI 
0.01 5.53 x 10 -5  5.38 x 10 -5  4.93 x 10 -5  NI 5.43 x 10 -5  5 . 0 4 x  10 -5  NI 5.41 x 10 -5  NI NI 
0 .005 NI NI NI NI NI NI NI NI NI NI 
0.001 NI NI NI NI NI NI NI NI NI NI 

* NI: Numerical instabi l i ty occurs before the f l ow  reaches the annulus exi t  cross section because of the presence of f l ow  reversals w i th in  the 
domain of solut ion. 

T a b l e  2 F-L relat ionships for var ious values for a f lu id of Pr = 0.7 in an annulus of N = 0.9, case (0) 

Dimensionless annulus height, L 

Re2/Ta = 10 Re2/Ta = 1 

F/EZ 0.00 0.45 0.9 > 1.8 - 0 .45 - 0 .90 - 1.80 0.00 > 0.45 < - 0.45 

0.095 4.05 x 10 -2  3.83 × 10 -2  3.42 × 10 -2  NI*  4 .08 × 10 -2  3.91 x 10 2 NI 3 .24 x 10 -2  NI NI 
0 .090 1.62 × 10 -2  1.54 × 10 -2  1.38 x 10 -2  NI 1.63 × 10 -2  1.57 × 10 -2  NI 1.31 × 10 -2  NI NI 
0 .080 6.53 × 10 -3  6.22 × 10 -3  5.62 × 10 -3  NI 6.57 × 10 -3  6.37 × 10 -3  NI 5.37 x 10 -3  NI NI 
0 .070 3.55 × 10 -3  3.38 × 10 -3  3.05 x 10 -3  NI 3.57 × 10 -3  3.44 × 10 -3  NI 2.91 × 10 -3  NI NI 
0 .060 2.08 x 10 -3  1.98 × 10 -3  1.76 × 10 -3  NI 2.10 x 10 -3  2.02 × 10 -3  NI 1.69 x 10 -3  NI NI 
0 .050 1.23 × 10 -3  1.16 × 10 -3  1.04 × 10 -3  NI 1.23 × 10 -3  1.18 x 10 -3  NI 9.88 x 10 -4  NI NI 
0 .040 6.97 × 10 -4  6.59 × 10 -4  5.84 × 10 -4  NI 7.00 × 10 -4  6.67 × 10 -4  NI 5.62 × 10 -4  NI NI 
0 .030 3.64 × 10 -4  3.45 × 10 -4  3.07 × 10 -4  NI 3.64 × 10 -4  3.45 × 10 -4  NI 2.97 x 10 -4  NI NI 
0 .020 1.61 x 10 -5  1 . 5 4 ×  10 -4  1 . 4 0 × 1 0  -4  NI 1.61 x 10 -4  1.53 x 10 -4  NI 1.33 × 1 0  -4  NI NI 
0 .010 5.00 × 10 -5  4.83 × 10 -s  4.48 x 10 -5  NI 4.97 x 10 -5  4.75 × 10 -5  NI 3.86 x 10 -5  NI NI 
0 .005 NI NI NI NI NI NI NI NI NI NI 

* NI :  Numerical instabi l i ty occurs before the f l o w  reaches the annulus top  exit due to the presence of  f l o w  reversals w i th in  the domain of 
solut ion. 

T a b l e  3 Adiabat ic  wal l  temperature against dimensionless axial distance, N = 0,9, Pr = 0.7 

Case (I)  Case (0) 

F ~ £  0.0 0.9 - 0 . 9  0.0 0.9 - 0 . 9  

0.03 

0.09 

2.00 x 10 -8  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  
3.13 x 10 -5  0 .0002  0 .0002  0 .0002  0 .0003  0 .0003  0 .0003  
1.06 x 10 -4  0 .0532  0 .0538  0 .0538  0.0601 0 .0600  0 .0600  
1.56 × 10 =4 0.1351 0 .1364  0 .1363  0 .1478  0 .1478  0 .1480  

L 0 .4967  0 .4386  0.4821 0 .4926  0 .4224  0 .4766  

2.00 x 10 -6  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  0 .0000  
1.30 x 10 -4  0 .0015  0 .0015  0 ,0015  0 .0019  0 .0019  0 .0019  
6.30 x 10 -4  0.2221 0 .2236  0 .2232  0 .2385  0 .2368  0 .2375  
1.1 3 x 10 -3  0 .4579  0 .4613  0 .4580  0.4811 0 .4772  0 .4808  
2.13 x 10 -3  0 .7362  0 .7392  0 .7358  0 .7589  0 .7556  0.7591 
3.13 x 10 -3  0 .8704  0 .8720  0.8701 0 .8870  0 .8853  0 .8872  
1.06 x 10 -2  0 .9992  0 .9992  0 .9992  0 .9995  0 .9995  0 .9995  

L 1 .0000 1 .0000 1 .0000 1 .0000  1 .0000  1 .0000  
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Figure 2 Temperature profiles: N = 0 . 9 ;  P r = 0 . 7 ;  
F = 0.09, Re2/Ta = 10 

Q = 0.45; 

the entrance cross sect:ion (i.e., value of Z increases). Also, 
because Figure 2 is for a relatively large value of F, the 
dimensionless temperature T approaches its fully developed 
value (T = 1) as the flow approaches the exit cross section. 
However, near the annulus entrance (small values of Z) the 
fluid temperature is affected only near the heated boundary. 

Engineers are usual]iy concerned with the mixing cup 
temperature T, and the heat gained or lost H by the fluid, 
rather than the details of the temperature field. Figure 3 gives 

0.0]- 

. . . .  c u 1 1 0 )  0 .~  " 

,, ,.o, //.gI7 
o., °.,, ,,,s' ,L,Sl",,/ 

z / /~ / t  
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Figure 3 Mixing cup temperature against axial distance: N = 0.9; 
Pr = 0.7; Q = 0; Re2/Ta = 10 

the variation of the mixing cup temperature T, with the 
dimensionless axial distance Z for both thermal boundary 
conditions (I) and (0) in an annulus of N = 0.9 with 1). This 
figure can be used for other values of t), as long as the flow 
remains laminar, because it has been found, from the obtained 
results, that the outer cylinder rotation has very slight and 
negligible effect on the temperature field. To clarify this point 
and to give other thermal parameters of importance to 
engineers, Tables 3 and 4 give the dimensionless heat absorbed 
H and the adiabatic wall temperature T=d against the 
dimensionless axial distance Z for a relatively large value of F 
(0.09), a relatively small value of F (0.01), and thermal 
conditions (I) and (0). In thse two tables, values of H and T,d 
are given at three chosen values of ~3; namely, fl = 0.0, 0.9, and 
-0 .9 .  It is clear from the results presented in these two tables 
that the outer cylinder rotation has only a negligible effect 
on the heat absorbed and the adiabatic wall temperature over 
the investigated range of t). 
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T a b l e  4 Dimensionless heat absorbed against dimensionless axial distance, N = 0. Pr = 0.7 

Case (1) Case (0) 

F ~ Q  0.0 0.9 - 0 . 9  0.0 0.9 - 0 . 9  

0.03 

0.09 

2.00 x 10 -s  0.00000 0.00000 0.00000 0.00049 0.00049 0.00049 
1.00 x 10 -7 0.00002 0.00002 0.00002 0.00050 0.00050 0.00050 
3.00 x 10 -7 0.00010 0.00010 0.00010 0.00053 0.00053 0.00052 
1.30 x 10 -6 0.00035 0.00035 0.00035 0.00064 0.00063 0.00063 
6.30 x 10 -s  0.00086 0.00086 0.00086 0.00106 0.00106 0.00106 
3.13 x 10 -B 0.00217 0.00217 0.00217 0.00240 0.00238 0.00238 
1.56 x 10 -4 0.00581 0.00585 0.00582 0.00617 0.00613 0.00616 

/_ 0.00970 0.00912 0.00955 0.00979 0.00905 0.00962 

2.00 x 10 -s  0.00057 0.00058 0.00058 0.00165 0.00164 0.00164 
1.00 x 10 -s  0.00178 0.00179 0.00179 0.00242 0.00240 0.00240 
3.00 x 10 -s  0.00328 0.00329 0.00329 0.00385 0.00385 0.00381 
1.30 x 10 -4 0.00764 0.00767 0.00767 0.00834 0.00827 0.00827 
6.30 x 10 -4 0.01986 0.02000 0.01987 0.02092 0.02075 0.02089 
3.13 x 10 -3 0.04087 0.04093 0.04087 0.04150 0.04145 0.04145 

L 0.04511 0.04511 0.04511 0.04511 0.04511 0.04511 
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